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Abstract. Solar-Induced chlorophyll Fluorescence (SIF) has previously been shown to strongly correlate with gross primary1

productivity (GPP), however this relationship has not yet been quantified for the recently launched TROPOspheric Monitoring2

Instrument (TROPOMI). Here we use a Gaussian mixture model to develop a parsimonious relationship between SIF from3

TROPOMI and GPP from flux towers across the conterminous United States (CONUS). The mixture model indicates the4

SIF-GPP relationship can be characterized by a linear model with two terms. We then estimate GPP across CONUS at 500-m5

spatial resolution over a 16-day moving window. We find that CONUS GPP varies by less than 4% between 2018 and 2019.6

However, we observe four extreme precipitation events that induce regional GPP anomalies: drought in west Texas, flooding in7

the midwestern US, drought in South Dakota, and drought in California. Taken together, these events account for 28% of the8

year-to-year GPP differences across CONUS.9

1 Introduction10

Terrestrial gross primary productivity (GPP) is the total amount of carbon dioxide (CO2) assimilated by plants through pho-11

tosynthesis and represents one of the main drivers of interannual variability in the global carbon cycle Le Quéré et al. (2018).12

As such, quantifying the spatiotemporal patterns of terrestrial GPP is critical to understanding how the carbon cycle will both13

respond to and influence climate. Work over the past decade has shown satellite measurements of solar-induced chlorophyll14

fluorescence (SIF) to correlate strongly with tower-based estimates of GPP (e.g., Frankenberg et al., 2011; Yang et al., 2015;15

Sun et al., 2017; Turner et al., 2020; Wang et al., 2020) and are often used as a remote-sensing proxy for GPP.16

This relationship between SIF and GPP is typically expressed through a pair of light use efficiency models Monteith (1972)17

that relate GPP and SIF to the absorbed photosynthetically active radiation (APAR):18

GPP = APAR×ΦCO2 (1)19

SIF = APAR×βΦF (2)20
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where ΦCO2 is the light use efficiency of CO2 assimilation, ΦF is the fluorescence yield, and β is the probability of fluoresced1

photons escaping the canopy. Solving for APAR and substituting, we can rewrite GPP as:2

GPP =
ΦCO2

βΦF
SIF. (3)3

The derivation follows from Lee et al. (2013), Guanter et al. (2014), Sun et al. (2017), and others.4

This seemingly straightforward relationship between SIF and GPP has been widely used to infer GPP from measurements of5

SIF (e.g., Frankenberg et al., 2011; Parazoo et al., 2014; Yang et al., 2015, 2017; Sun et al., 2017, 2018; Magney et al., 2019;6

Turner et al., 2020) with some work showing that SIF captures more variability in GPP than APAR alone (e.g., Yang et al.,7

2015, 2017; Magney et al., 2019). However, there is much complexity encapsulated in the first term of Eq. 3 (ΦCO2/βΦF).8

There is an ongoing debate about what exactly SIF is telling us about GPP (e.g., Joiner and Yoshida, 2020; Maguire et al., 2020;9

Dechant et al., 2020; He et al., 2020; Marrs et al., 2020) and the spatio-temporal scales at which SIF and GPP correlate well. A10

recent paper from Magney et al. (2020) presents a concise summary of the covariation between SIF and GPP at different spatio-11

temporal scales and how non-linear relationships at the leaf-scale often integrate to a linear response at the canopy-scale. This12

is due, in large part, to the fact that most of our satellite measurements occur near the middle of the day when the ΦCO2 -ΦF13

response is more-or-less linear and the observed signal is integrated over many leaves.14

Here we focus on the ecosystem-scale relationship between SIF and GPP, as that is the relevant observable scale from space-15

borne instruments. We begin by characterizing the relationship between instantaneous SIF from TROPOMI and half-hourly16

GPP from flux towers. Following this, we use this ecosystem-scale relationship to infer GPP at a spatial resolution of 500-m17

using TROPOMI SIF measurements and identify drivers of interannual variability in GPP. Previous work has identified effects18

such as seasonal redistribution Butterfield et al. (2020), drought (e.g., Sun et al., 2015), and flooding Yin et al. (2020) as19

important drivers of interannual variability in GPP.20

2 Identifying distinct relationships between SIF and GPP21

We build on our previous work Turner et al. (2020) downscaling measurements of SIF to 500-m spatial resolution. Briefly, the22

TROPOspheric Monitoring Instrument (TROPOMI; Veefkind et al., 2012) is a nadir-viewing imaging spectrometer. TROPOMI23

has a 2,600 km swath with a nadir spatial resolution of 5.6 km along track and 3.5 km across track. Köhler et al. (2018) presented24

the first retrievals of SIF from TROPOMI. As in Turner et al. (2020), we apply a post hoc bias correction to ensure positivity25

of monthly average values as systematically negative SIF values are non-physical. We downscale individual TROPOMI scenes26

using the near-infrared reflectance of vegetation index (NIRv) that was proposed by Badgley et al. (2017, 2019). We use27

the MCD43A4.006 (v06) MODIS NBAR reflectances Schaaf et al. (2002) to compute NIRv. Two notable differences from28

Turner et al. (2020) are: 1) the analysis is extended to cover all of CONUS and 2) we now use a 16-day moving window, thus29

including a full orbit cycle in each averaging window to minimize effects due to viewing-illumination geometry and noise.30

Supplemental Fig. S3 shows the improvement when averaging to longer temporal windows with an r of 0.66, 0.74, 0.79, and31

0.82 for instantaneous, 8-day, 16-day, and 32-day temporal windows, respectively.32
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Figure 1. Dominant landcover over conterminous United States (CONUS). Colors show the dominant landcover over CONUS. Classifi-

cation is based on the 2019 USDA CropScape database USDA (2018). Forests are shown in green croplands in yellow, and wetlands in blue.

Location of 82 AmeriFlux sites used in this study are shown as yellow stars.

The extension to CONUS facilitates comparison of TROPOMI SIF retrievals to flux tower data over a more representative1

set of ecosystems and robustly infer the SIF-GPP relationship. Specifically, there are 82 AmeriFlux sites Baldocchi et al. (2001)2

within CONUS that reported data in 2018, 2019, or 2020 whereas Turner et al. (2020) only included 11 sites and did not have3

data from forests. Figure 1 shows the location of these 82 AmeriFlux sites overlaid on the dominant landcover. These eddy4

covariance sites provide a direct measure of net ecosystem exchange (NEE; CO2 fluxes) Baldocchi et al. (1988). We use GPP5

that has been partitioned by the group operating the site. If GPP is not provided we compute it using nighttime measurements6

of NEE as a proxy for ecosystem respiration Reichstein et al. (2005). The AmeriFlux sites used here cover 10 ecosystems as7

defined by the International Geosphere-Biosphere Programme: evergreen needleleaf forest, deciduous broadleaf forest, mixed8

forest, grassland, cropland, wetland, woody savanna, savanna, open shrubland, and closed shrubland.9

We characterize the relationship between TROPOMI SIF and AmeriFlux GPP by plotting downscaled instantaneous SIF10

observations against the nearest AmeriFlux GPP data in time (see Supplemental Figs. S1-S3). Specifically, the 6 steps we11

take here are: 1) apply the post hoc bias correction to the TROPOMI SIF data, 2) find all TROPOMI scenes that cover an12

AmeriFlux site, 3) downscale TROPOMI scenes to 500-m using MODIS NIRv, 4) construct a timeseries of SIF observations13

from the 500-m grid cell that contains the AmeriFlux site, 5) construct a timeseries of AmeriFlux GPP data that are coincident14

in time with the TROPOMI overpass, and 6) regress SIF on GPP with a bisquare regression. The bisquare regression was15

chosen due to robustness against outliers. Additionally, we force the regression through the origin based on the physical16

constraint that GPP should be zero if SIF is zero. We observe a linear relationship between SIF and GPP when plotted against17
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all ecosystems (Supplemental Figure S1) and when separated by ecosystem (Supplemental Figure S2). Notable exceptions1

are closed shrubland, open shrubland, and savanna ecosystems where SIF explains less than 10% of the variability in GPP2

for AmeriFlux sites in those ecosystems due, in part, to a low signal-to-noise ratio. These ecosystems typically have a small3

signal and the bright surfaces often result in a higher retrieval uncertainty. This combination of a small signal and high retrieval4

uncertainty results in a low signal-to-noise ratio, complicating efforts to derive a robust relationship between SIF and GPP for5

these ecosystems.6

Many of the ecosystems exhibit a similar linear relationship between SIF and GPP, which begs the question: “what ecosys-7

tems have a distinct SIF-GPP relationship?” To address this, we bootstrap the bisquare regression for each ecosystem 20008

times. The slopes from this bootstrap can be seen in Figure 2. The range of slopes vary from 13 to 18
(
µmolm−2 s−1

)
/
(
mWm−2 sr−1 s−1

)
9

with grasslands at the low end and evergreen needleleaf forests at the high end. We then use a two component Gaussian mixture10

model (see, for example, Bishop, 2007) to identify clusters of ecosystems with a similar SIF-GPP relationship. The implemen-11

tation of our Gaussian mixture model is adapted from Turner and Jacob (2015). Parameters of the mixture model are obtained12

via an iterative expectation-maximization algorithm. A drawback of these mixture models is they often find local minima. To13

address this, we repeat the fitting of the mixture model with multiple initializations and use simulated annealing to search for14

a global minimum. We tested a range of mixture model sizes and found a mixture of two Gaussians to be the most robust. The15

resulting mixture model is overlaid on the histogram in Figure 2.16

We observe a clustering of ecosystems with SIF-GPP relationships around 16.4
(
µmolm−2 s−1

)
/
(
mWm−2 sr−1 s−1

)
. This17

grouping is the dominant weighting term for wetlands, evergreen needleleaf forest, deciduous broadleaf forest, mixed forest,18

cropland, and woody savanna. We refer to this cluster as the “Dominant Cluster” and assume that ecosystems not specifically19

mentioned elsewhere will have a response that is similar to this primary cluster. The other component of the mixture model20

corresponds to grasslands. Ecosystems not explicitly mentioned use the “Dominant Cluster” for scaling SIF to GPP. Table 121

lists the SIF-GPP relationships for these two clusters. Previous work has also found unique SIF-GPP relationships between C322

and C4 plants using measurements from a tower including a non-linear response in C3 plants He et al. (2020), we examined23

this here using two AmeriFlux sites in corn fields and two in potato fields. We do observe potential differences in the SIF-GPP24

relationship between these C3 and C4 systems (see Supplemental Figure S5). The difference in SIF-GPP relationship for C325

and C4 systems seen here is also similar to what was observed using NIRv Badgley et al. (2019). These relationships can be26

used to reconstruct GPP from TROPOMI SIF as: GPP = SIF× (
∑
i fisi) where si is the SIF-GPP relationship in Table 1 for27

the ith cluster and fi is the fraction of a grid cell represented by that cluster.28

TROPOMI is in low earth orbit and only observes a snapshot in time. The equatorial overpass time at nadir is 13:30 local29

time. By assuming that GPP scales linearly with PAR (i.e., Eq. 1) we can compute a correction factor to estimate daily integrated30

GPP. More formally, we scale the instantaneous SIF by the ratio of the integral of the cosine of the solar zenith angle (SZA) over31

the day to cos(SZA) from the TROPOMI overpass time. Putting everything together, we estimate daily GPP from TROPOMI32

SIF observations as:33

GPP(x,y, t) = SIF(x,y, t) · γ
∑

i
sifi(x,y) ·

∫ τf

τ0
cos [SZA(x,y,τ)]dτ

cos [SZA(x,y,τs)]
(4)34
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Figure 2. Identifying distinct SIF-GPP relationships across ecosystems. Histogram shows the distribution of slopes that map SIF to GPP

using a bisquare regression and a 2000 member bootstrap. Colors denote the different ecosystems and triangles at the bottom show the mean

for that ecosystem. Gray distributions are from a two-member Gaussian Mixture Model and the stars indicate the mean for that component.

Table 1. SIF-GPP relationships for different groupings.

Cluster SIF-GPP relationshipa (si)

Dominant Cluster 16.4 ± 0.4

Grassland 14.1 ± 0.1
aAll SIF-GPP relationships have units of(
µmol m−2 s−1

)
/
(
mW m−2 sr−1 nm−1

)
. Uncertainty is

the diagonal of the covariance matrix for the mixture model.

where SIF(x,y, t) is the 500-m downscaled SIF using a 16-day moving window, γ is a unit conversion from µmol to gC, si is1

the SIF-GPP relationship inferred from comparison with AmeriFlux GPP (see Table 1), fi(x,y) is the fraction of the grid cell2

represented by the ith cluster, SZA is the local solar zenith angle, τ0 is sunrise, τf is sunset, and τs is the hour corresponding to3

the TROPOMI overpass time. We do not include information on cloud cover in our approach, this could potentially be included4

in the future to account for diurnal variations in PAR.5

3 Drivers of interannual variations in US gross primary productivity6

Figure 3 shows annual mean GPP across CONUS inferred from TROPOMI SIF measurements using Eq. 4. A number of7

prominent features are visible such as the Central Valley of California, the Snake River Valley in Idaho, and the Adirondack8

Mountains in upstate New York. California’s Central Valley and Idaho’s Snake River Valley are both major agricultural regions9

in the western US (e.g., the Central Valley of Califoria accounts for more than 15% of irrigated land in the US). The Adirondack10

5
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Mountains are a roughly circular dome that rise above the surrounding lowlands, resulting in a shorter growing season and lower1

annual mean GPP. This shortened growing season can be seen in an animation of GPP over CONUS (Supplemental Movie S1).2

Figure 3. Interannual variations in gross primary productivity across CONUS. Map of annual mean GPP for 2018 (panel a) and 2019

(panel b). (Panel c) Map of the difference in annual mean GPP between 2019 and 2018. Red indicates higher GPP in 2019 and red indicates

higher GPP in 2018. Inset in bottom left corner shows a timeseries of the average GPP across CONUS for 2018 and 2019.

We observe substantial GPP across the eastern US (delineated here by 98◦W) with annual mean values generally in excess of3

5 gC/m2/day. This region accounts for less than half of the land but more than 70% of the annual GPP. This delineation in GPP4

roughly coincides with the location of drylands in CONUS that are more sensitive to changes in precipitation; drylands are also5

6
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projected to expand in future climate Yao et al. (2020). Most of the large year-to-year differences occur in these western US1

drylands (see Fig. 3c), a notable exception being a negative GPP anomaly in 2019 relative to 2018 that extended across Illinois,2

Indiana, and Ohio. Here we highlight four precipitation-driven GPP anomalies, which taken together, account for 28% of the3

interannual GPP variability across the United States: 1) 2018 drought in west Texas, 2) 2019 midwestern crop flooding, 3) 20184

drought in South Dakota, and 4) 2018 drought in California. Figure 4 summarizes the interannual precipitation differences that5

we hypothesize are responsible for explaining these four GPP anomalies.6

The largest positive GPP anomaly in 2019 relative to 2018 was observed across western Texas. This single event accounted7

for 11% of the year-to-year difference in GPP across CONUS with an annual GPP of 0.65 ± 0.47 PgC in 2018 and 0.76 ±8

0.45 PgC in 2019. From Figure 4a, we observe 50% higher GPP in spring 2019 compared to spring 2018. This increase in GPP9

was driven by a lack of precipitation in spring 2018. The cumulative precipitation from October 2017 through June 2018 was10

50% less than October 2018 through June 2019 (500 mm vs 1000 mm). The other notable difference between GPP in 2018 and11

2019 was a second peak during fall 2018 that was not present in 2019. This second peak coincided with a series of precipitation12

events beginning in early September. This tight coupling between GPP and precipitation is expected for dryland systems such13

as west Texas (e.g., Smith et al., 2019). The seasonal GPP dynamics inferred from TROPOMI SIF are also present in the14

MODIS vegetation index NIRv, albeit with slight differences in magnitude, implying convergent responses in SIF and NIRv15

for this ecosystem.16

The second largest anomaly is the reduction in 2019 GPP relative to 2018 across midwestern crop areas (specifically Illinois,17

Indiana, and Ohio) that accounted for 7% of the year-to-year difference in CONUS GPP. The 2018 annual GPP was 0.70 ±18

0.12 PgC and 0.63 ± 0.14 PgC in 2019. We observe a decrease in the maximum GPP between 2019 and 2018 as well as a two19

week delay in the timing of the maximum. This anomaly was highlighted in recent work from Yin et al. (2020) who attribute20

the anomaly to flooding in the midwestern US. The flooding delayed planting of crops by two weeks and resulted in decreased21

carbon uptake across the midwestern crop areas and Mississippi Alluvial Valley, where we also observe a negative anomaly in22

Figure 3c. Yin et al. (2020) provide a detailed discussion of these floods and their impacts on crop productivity.23

South Dakota exhibits a dipole with positive anomalies in 2019 in the west and negative anomalies in the east, again relative24

to 2018. The 2018 annual GPP was 0.20 ± 0.09 PgC and 0.63 ± 0.08 PgC in 2019. The negative anomalies in the east are25

driven by the flooding events discussed above and in Yin et al. (2020). However, the positive anomaly in western portion of26

the state is the dominant term. This positive anomaly is driven by a series of summer precipitation events that served to extend27

the growing season across the western plains. From Figure 4c, we can see three precipitation events throughout the mid-to-late28

summer that coincide with pauses in senesence: mid-July, early August, and mid-September. As with Texas, this highlights29

the tight coupling between GPP and precipitation for dryland systems. In toto, these precipitation events served to increase30

statewide GPP in 2019 relative to 2018.31

The final notable anomaly is California’s positive GPP anomaly in 2019. The 2018 annual GPP was 0.27 ± 0.24 PgC and32

0.33 ± 0.26 PgC in 2019. 2018 was a mild drought in California with ∼80% of the state being classified as abnormally dry;33

2019 had 50% more precipitation during the water year than 2018 (Figure 4c). Two consequences of this drought in 2018 were:34

a delayed onset of photosynthesis and a mid-summer senescence. The onset of photosynthesis in 2018 coincided with a series35
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Figure 4. Major drivers of interannual variability in CONUS GPP. Black line shows the TROPOMI-derived GPP over Texas (a), the

midwest crop region (b), South Dakota (c), and California (d). Blue line shows the cumulative precipitation over the water year as measured

by the GPM satellite. Green line is NIRv from MODIS. Black and Green dotted lines are 2018 GPP and NIRv superimposed on the 2019

timeseries. 8
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of atmospheric rivers that delivered about a third of the total precipitation that year, indicating a water limitation up to that1

point. In contrast, 2019 had ample precipitation through the winter and we observe both an earlier onset of photosynthesis and2

an extension of the growing season into the fall. Evergreen forests are the main contributor to the SIF signal during the summer3

and fall Turner et al. (2020) and, as such, will be more sensitive to the accumulated precipitation. The spatial pattern of the4

differences in August-November GPP (Fig. S4) strongly correlate with evergreen forests.5

In contrast to the anomalies presented earlier, the SIF-derived GPP and MODIS-based vegetation index (NIRv) show di-6

vergent seasonal dynamics for California. NIRv shows small differences between 2018 and 2019 with a strong similarity to7

the 2019 SIF-derived GPP. The seasonality of NIRv is similar to that of the leaf area index (LAI) derived from MODIS (see8

Supplemental Figure 6), implying a biophysical signal. Vegetation indices estimate photosynthetic capacity provided optimal9

soil moisture, temperature, and PAR are known Sellers (1985). As such, this suggests that we observed a down-regulation of10

photosynthesis from evergreen forests in response to a water limitation during fall 2018, whereas these forests were close to11

photosynthetic capacity in fall 2019 resulting in a similar seasonality to 2018 and 2019 NIRv. Sims et al. (2014) also report a12

low sensitivity of MODIS vegetation indices to drought stress in forests.13

4 Conclusions14

We have developed a parsimonious relationship between measurements of SIF from TROPOMI and GPP inferred from flux15

towers. This relationship allows for estimation of GPP directly from TROPOMI SIF measurements. We combine this SIF-16

GPP relationship with work downscaling TROPOMI data to 500-m spatial resolution to construct estimates of GPP across the17

conterminous United States in 2018 and 2019. Our estimate of US GPP varies by less than 4% between 2018 and 2019. We do,18

however, observe large regional anomalies that are driven by extreme precipitation events. Namely, west Texas, South Dakota,19

and California experienced droughts in 2018 while midwestern US crop areas (Illinois, Indiana, and Ohio) experienced flooding20

in 2019. Taken together, these four events account for 28% of the year-to-year variability in GPP across the conterminous21

United States.22

The impact of the west Texas drought, South Dakota drought, and midwestern flooding are observed in other remote-23

sensing measures of photosynthetic capacity such as NIRv while the California drought shows a divergent result using SIF; the24

divergent responses are driven by specific ecosystems such as evergreen forests. Our work suggests that SIF provides a measure25

of photosynthetic activity as opposed to photosynthetic capacity, and converge with other remote-sensing measures under non-26

stressed conditions. Future work investigating the response to extreme events across ecosystems may provide additional insight27

into these divergent responses in remote-sensing measurements related to photosynthesis.28
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